Broccoli

VEGETABLE CROPS PRODUCTION GUIDE
FOR NOVA SCOTIA

Updated by:
Dr. Viliam Zvalo, Consultant (Horticulture)
Alana Respondek, Consultant (Horticulture)

Published June, 2007

TABLE OF CONTENTS

1.0 INTRODUCTION……………………………………………………………..2

2.0 CROP ESTABLISHMENT…………………………………………………2
 2.1 SEED TREATMENT
 2.2 SEEDING/PLANTING

3.0 CROP MANAGEMENT…………………………………………………..3
 3.1 IRRIGATION
 3.2 SOIL FERTILITY
 3.3 CROP ROTATION

4.0 PESTS AND PEST MANAGEMENT……………………………………5
 4.1 WEEDS
 4.2 DISEASES
 4.3 INSECTS
 4.4 PHYSIOLOGICAL DISORDERS

5.0 HARVESTING AND HANDLING…………………………………………13
 5.1 STORAGE AND CONDITIONING

6.0 BIBLIOGRAPHY……………………………………………………………13
1.0 INTRODUCTION

Broccoli (Brassica oleracea var Italica) is part of a large group of plants also known as Cole Crops. Cole crops are a group in the Brassicaceae or mustard family (previously Cruciferae or crucifers).

The term “Cole” crops originated from the word caulis, meaning stem or stalk of a plant. Cole crops are biennials, but are generally grown as annuals. Broccoli originated from the Mediterranean region.

The brassica family is quite cold resistant, making them well adapted to cool season production, with most requiring a cold period for flowering. Young, hardened broccoli plants can withstand temperatures of 0°C for less than 36 hours, as well as a light frost. The minimum and maximum growing temperature is 0°C and 29°C, however, the optimum growing temperature range is between 15 and 22°C. Optimum germination temperature is 20°C.

High temperatures (greater than 27°C) delay maturity and increase vegetative growth and cool temperatures (1.5 -10°C) hasten maturity and may induce ‘bolting’. Bolting is the term given when broccoli prematurely forms a flower stalk.

Broccoli requires soils that can provide continuous water throughout the season. Well drained, sandy loam soils are suited to early varieties, whereas loamy and clay loam soils are suited to late ones because they are somewhat tolerant of poor drainage. Well drained soils can be rotated closely since clubroot is easier to control.

Broccoli is well suited to the climate of Nova Scotia, and is extremely important to the fresh markets.

2.0 CROP ESTABLISHMENT

2.1 SEED TREATMENT

Broccoli seed can be sized and/or pelleted for precision seeding of plastic plug trays/plastic plant cells or direct seeding into the field. With the high cost of hybrid seed, almost every seed must produce a marketable plant.

2.2 SEEDING/PLANTING

For early markets, transplants must be raised in greenhouses. About five to six weeks are required to produce transplants, so start in February or March. Plants may be grown in plastic plug trays/plant cells, or in peat blocks (e.g. Jiffy pots). Broccoli may have two plants per cell in some production systems where large terminal heads are not desired. Normally 300 grams of seed will produce enough plants for one hectare. Old or large plants of broccoli and those grown at low temperatures (10 to 15°C) are likely to button (premature head formation) and bolt if exposed to a period of cool weather after field setting. Plant seedlings outside when they are about 15 cm high with 5-6 true leaves. Slight hardening is beneficial, but severe hardening may stunt growth. Hardening is the process whereby, 2 weeks before planting, transplants are gradually acclimatized to the outdoor environment.

For late markets, transplants may be raised in plastic plug trays/plant cells, a greenhouse seedbed, or direct seeded. For greenhouse production, follow the instructions given above, but start plants in May. If growing in seedbeds, space rows 25 to 30 cm apart and seed 20 seeds per 25 cm of row with a scatter shoe seeder. Start seed between May and June for transplanting out in June and July. When direct seeding, 1 kg of seed is required per hectare, since seed is generally planted at twice the final spacing. Direct seed two to three weeks earlier than
transplanting for the same harvest date. Place seeds 12 mm deep and 25-40 cm apart, in rows that are 60-75 cm apart.

For broccoli crops to be harvested during the hot humid weather of August, plant spacing’s should be increased to the wider end of the range recommended to help reduce head rot.

3.0 CROP MANAGEMENT

Harvest in Nova Scotia begins in early July and continues until the end of October. With the use of row covers, the first crop could be harvested in June. Successional plantings through the spring and summer will allow for regular harvests thus providing a continuous supply to the market. Broccoli does not store well resulting in a short storage period. Harvest and marketing of the crop finishes by late October and may stretch to early November in some years.

3.1 IRRIGATION

The availability of water is critical to successful broccoli production. Irrigation may also be used to cool plants during periods of high temperature. Fertilizer could be applied through an irrigation system. Irrigation at the wrong time can cause problems such as head rot. Broccoli crops require a regular water supply of 25 mm every 5 to 7 days during the growing season. Shortage of water is detrimental for head development. Sprinkler, big gun irrigation systems are common in Nova Scotia, however drip irrigation could also be used in broccoli production.

3.2 SOIL FERTILITY

Recommendations for supplemental organic matter, fertilizer, lime or manure should be based on a soil test and a Nutrient management plan. In Nova Scotia, soil tests are performed by the provincial agriculture labs in Truro. To find out more about how to take a soil sample, where to send the sample and fees for the tests, visit www.gov.ns.ca/agri or phone (902) 893-4683. Nutrient management plans balance the crop requirements and nutrient availability, with the aim to optimize crop yield and minimize ground water contamination, while improving soil productivity.

Manure

Broccoli does well when manure is applied, however it is best not to use manure from animals that have been fed turnips or rutabagas. Excessive use of manure may contribute to tip burn, hollow stem, internal browning, head rot and other problems.

Lime

Lime should be applied to maintain the soil pH in the range of 6.5 to 7.0, unless club root control is required (pH of 7.2). If soil pH is below 6.2, apply lime six weeks before planting.

Nitrogen

130 to 150 kg/ha of actual nitrogen is required for broccoli. If manure is applied or legume sod is plowed down, then a reduction in additional nitrogen is required. Broadcast apply 80 kg/ha before planting and work in. Apply the remainder in two side dress applications. The first side dress application should be 7-10 days after planting and the second 4-6 weeks later. If the season is very moist, a third side dress application may be used three weeks after the second application. Adequate nitrogen produces a dark green colour in broccoli leaves. Nitrogen deficient plant leaves are light green, eventually turning yellow and may be shed. Excess nitrogen during hot, humid weather will increase the incidence of head rot of broccoli.

Phosphorous

A soil test will determine the level of phosphorous requirements. Broadcast or band any needed phosphate before planting and work in. Phosphorous is important for root growth. A shortage of phosphorous stunts plants growth.
Potassium
A soil test will determine potassium requirements. Broadcast apply potash in the fall and work into the soil. Excessive potash may lead to increased tip burn (internal and/or external). Potash competes with calcium for uptake from the soil and this is probably what causes the increased tip burn.

Magnesium
Older leaves are the first to show deficiency signs, which include blotches of interveinal chlorosis. As the chlorosis intensifies, purple blotches may be seen near the leaf margins. Deficiency is fairly common especially on light acid soils where dolomitic limestone has not been applied. To avoid these problems, apply dolomitic limestone or add magnesium to the fertilizer. If the problem occurs during the season spray the foliage with Epsom salts (magnesium sulfate).

Sulfur
Early deficiency symptoms appear as blotches of interveinal chlorosis on the youngest leaves, and the leaves may become reflexed. On sandy soils low in organic matter that has been intensively cropped, soil sulfate levels may be low. Application of gypsum should be considered on these soils. Broccoli crops have a high need for sulfur.

Micronutrients

Boron
Deficiency may cause hollow stem, stem discoloration, cracking, leaf rolling, deformed buds as well as browning of broccoli heads. If the soil test indicates low levels of boron apply 2.5 – 3.0 kg of boron/ha and disk in before planting. Boron should never be banded, however it can be foliar applied.

Molybdenum
Molybdenum deficiency causes whiptail in broccoli. Whiptail results in a deformed growing point causing no head to develop, as well as leaf blades consisting mostly of midribs. Molybdenum may be supplied as a seed treatment, as a foliar spray to transplants before field setting, in the transplant water or as a foliar spray. Apply 30-45 g of Sodium Molybdate per 100 L of transplant water or 280 g of Sodium molybdate as a spray in 1100 L of water per hectare. (Sodium molybdate is approximately 40 % molybdenum). Excessive molybdenum is toxic to plants and animals – use with care. It will carry over in the soil.

Manganese
Deficiencies may occur on sandy, over limed soils. Manganese deficiency causes yellowing between veins of young leaves. Leaves gradually turn pale-green with darker green next to the veins, petioles and stems. Foliar sprays of manganese sulfate may be necessary to correct a deficiency.

3.3 CROP ROTATION
There are many benefits to crop rotation including the suppression of diseases, insects and weeds. In addition, crop rotation improves soil fertility because it is allowed to replenish naturally and soil structure improves because of the alternating between deep rooted and fibrous rooted crops.

Crops within a family tend to be susceptible to the same pests, therefore rotation of non susceptible crops (or groups) for several years allow all plant material to decompose and pest cycles to become broken. Without the presence of susceptible plant material, the number of disease and insect organisms will begin to diminish.
Crop rotation aids in weed control because the growth habit of each crop differs, which causes a decrease in a weed's ability to compete for space. Also, tillage practices and timing are different for dissimilar crops resulting in a decrease in the weeds ability to permanently establish. Another benefit of crop rotation for weed management purposes is with certain crops, there is a better chance at controlling different weeds. For example, in a broadleaf crop, grass control will be easier because of the use of grass killing herbicides and visa versa.

To create a crop rotation schedule, there are several things to be considered including types of vegetables grown, size of root system, size of planting rows, amount of fertility required for the crop and how much organic matter is left in the soil by the crop. Start designing the crop rotation by making a list of all vegetables to be grown and group them together by botanical relationship (e.g. brassicaceae, solanaceae, alliaceae). Each year, change the location of the entire group within the field. This way, the same crop group will not be planted on the same piece of land two years in a row. Secondly consider the size of the root system of the crop to be grown. Deep rooted plants will help to break up the soil, while shallow rooted crops will not. Thirdly, consider the size of the plant rows. Wide rows will allow for more weed seeds to germinate, but on the other hand, tillage equipment may be able to go through them with more ease than in narrow rows. The fourth consideration should be given to whether or not the crop to be planted is a heavy feeder. A heavy feeder will deplete the soil of nutrients quicker than a non heavy feeder. The final consideration for a crop rotation is whether or not the crop will leave a lot of organic matter in the soil. Leaving organic matter behind is beneficial for replenishing the soil of nutrients lost to the crop while it was growing.

A long rotation of more than five years is better than a short rotation of two years. Also, ask yourself the following questions when putting together a rotation: Is the rotation profitable? Are the yields sustainable? Does it make use of nitrogen produced by an earlier crop? Are herbicide residues left?

Due to disease and insect pressures (refer to the pest management section in this guide) it is best to plant broccoli once in four years. Brassica crops use a lot of nitrogen so it may be beneficial to plant a legume crop before a broccoli. Broccoli has an intermediate root depth that will aid in improving soil structure and aeration. This crop has small seeds which will require a finely manicured seed bed, therefore previous crop residues will not be tolerated. If transplants are used, the roots can tolerate some plant residue, but too much will negatively affect root growth.

4.0 PESTS AND PEST MANAGEMENT

Effective management of any pest requires the use of multiple pest control techniques. Integrated Pest management (IPM) is a system that integrates Managerial, Cultural, Physical, Biological and Chemical control techniques to manage pests. A key to IPM is understanding what pests are in your crop, through scouting and adjusting production practices to discourage pests from becoming problems. IPM is a proactive approach to pest management, rather than just a reaction to pests as they occur. For more information on IPM techniques, refer to the AgraPoint Guide to Pest Management.

4.1 WEEDS
Perennial weeds should be controlled prior to planting. Herbicides recommended for use on Cole crops will not provide complete control of weeds; therefore it is important to grow Cole crops on soil where the weed seed population is low. The weed seed bank in the soil can be reduced by crop rotation, summer fallow, and stale seedbed technique. Care must be taken to avoid fields where residual herbicides from previous years persist in the soil as crop injury may occur. Refer to the AgraPoint Guide to Pest Management for a listing of herbicides and their application methods.
4.2 DISEASES

Clubroot
Clubroot (*Plasmodiophora brassicae Wor.*) is a soil born disease which affects broccoli. Early infections are difficult to detect as symptoms begin underground. Symptoms include small to large swellings and other malformations of the roots. As a result of these swellings, water and nutrient flow are restricted within the plant, which causes the above ground parts to wilt, turn colour and look stunted. Wilting is most common on warm sunny days; plants may show little wilting early in the morning or late at night. Throughout Nova Scotia, it is a major problem where poor management practices are followed.

The clubroot fungus enters the plant through the many fine hairs on the roots. The extent of the disease is affected by many factors. Moist, cool soils usually produce more diseased plants than dry, warm soil. The disease also thrives best in acid soils; that is when the pH is below 7. Once land becomes infested with this disease, it will remain so for several years.

When clubbed plants rot and break down in the fall, the fungus spores are released into the soil, where they may live for 10-20 years, ready to infect any Cole crop subsequently planted. Since the fungus spores are in the soil, movement of the soil by any means (boots, tools, winds or water, etc.) also spread the disease.

Control:
There are seven things that can be done to reduce the occurrence of this disease;
1. Isolate (if possible) or avoid the use of infested fields for brassica crops for about seven years. The disease affects only the brassica crops so any other crop may be planted as long as brassica type weeds are not present.
2. Do not apply clubroot infested manure on land to be use to grow brassicas. Cattle fed infected plant material can pass the fungus spores in manure, therefore it is best to put contaminated manure back on the field that contained the infected roots, thus preventing the spread of the disease to other fields. Another possibility would be to place contaminated manure on permanent pasture lands that will not be used for any susceptible crop and where run-off will not carry the disease to clean fields.
3. Rotate crops and fields as a preventative measure before club root occurs. Allow at least three years between growing susceptible crops.
4. Clean and disinfect all equipment used on infested land before using on a non-contaminated field. Washing or steam cleaning will prevent carrying the disease to clean fields. Live steam delivered at 690 kpa pressure for five minutes is the best method to disinfect equipment.
5. Control susceptible weeds whenever possible. Weeds of the mustard family will maintain or increase the level of infestation of clubroot in a field. Examples of susceptible weeds that occur in Nova Scotia are as follows: wild radish, wild mustard, stinkweed, pepper grass, shepard’s purse, false flax, hare’s ear mustard, worm seed mustard and yellow rocket.
6. Apply lime to raise the pH of the soil to at least 7.2. Clubroot seems to thrive best in moist, acid soils, therefore wet, poorly drained land should be avoided or drainage improved.
7. Use clubroot free transplants. The only way to ensure clean transplants is to use sterile soil. Clean boxes and equipment with steam. In the early stages of infection, plants may not show any signs of disease, so it is essential to purchase plants from a reliable source or to follow the procedures for producing healthy plants. Make sure you have enough clean plants for the area to be planted. Diseased plants beside healthy ones will result in all plants becoming infected. When growing transplants in the field, it is important to
select a well drained area where it is known that clubroot has never occurred. Certain soil fumigants will control the clubroot organism.

Refer to the AgraPoint Guide to Pest Management for a listing of fungicides and their application methods.

Grey Leaf Spot and Black Leaf Spot

Alternaria brassicae (grey leaf spot) causes small and light brown or grey lesions and *A. brassicola* (black leaf spot) causes larger and darker lesions. These diseases are seed and soil borne. Small black spots (1 to 2 mm in diameter) appear on leaves, later turning into a tan colour with target-like concentric rings. When the spots dry out, the tissue falls from leaves, resulting in a ‘shot-hole’ appearance. Cool temperatures, rain and high humidity favour the development of this disease. Spots usually are most conspicuous on the outer, older leaves. The disease causes small brown sunken lesions and decay of broccoli heads, under very wet conditions. The spots enlarge in storage to sunken, black areas. *Alternaria* is a secondary fungus; it usually invades the plant after it has been injured by other pests or management practices.

Control:

Use clean, certified seed or a hot water seed treatment if certified seed is not available. Practice long rotations between Cole crops, avoid overhead irrigation and make sure to incorporate plant debris. Good air circulation is needed in the field, as well as in storage. Keep storage temperature at 0°C and relative humidity at 92% to 95%. Refer to the AgraPoint Guide to Pest Management for a listing of fungicides and their application methods.

Downey Mildew

This disease is caused by the fungus *Peronospora parasitica*. Once infected, the plant shows white, fuzzy masses in patches on the underside of leaves, stems and heads. The tops of leaves turn purple, than later turn yellow or brown. Internally, the broccoli heads may show brown and black streaks on the main stalk and branches leading to the florets. Infection is favoured by wet, cool weather, especially during prolonged periods of leaf wetness, such as during dew or fog. This fungus over winters in seed and can survive for at least two years. It also over winters on infected plants and can survive in the soil for at least one year.

Control:

Good air and water drainage is critical in controlling this disease, along with avoiding water on the crop in the afternoon and evenings. Crop rotation with non brassica plants and incorporating plant debris will also aid in controlling this disease. Refer to the AgraPoint Guide to Pest Management for a listing of fungicides and their application methods.

Rhizoctonia

The soil borne fungi *Rhizoctonia* and *Pythium* cause two diseases of broccoli including Damping –off and Wirestem.

Pre-emergence damping off occurs when seeds are attacked and decay, as well as when plants germinate, but fail to emerge. Post-emergence damping off occurs when the stem of 2 to 5 cm tall plants are attacked. A water soaked area completely encircles the stem near the soil line and the seedling wilts and topples over.

Wirestem results from an extension of the damping off process, but new infections may occur on plants 10-15 cm tall. The stem above and below the soil line darkens, and the outer cortex tissue decays and sloughs off in sharply defined area encircling the stem. The stem is thin and wiry at the lesion but remains erect. The plant may survive, but will perform poorly.
Control:
For damping off and wirestem in seedbeds, only sterilized soil or soil that has not previously had brassicas for several years should be used. Seeds should be hot water treated and also treated with a suitable fungicide. Plant density should permit adequate light and air penetration. Factors such as deep planting, reduced seed vigour and excessively cold, hot, moist or saline soils that delay seed emergence should be avoided. Deficiencies of calcium, potassium and nitrogen or excessive nitrogen may promote disease. A field rotation with non-brassica crops should be practiced for at least three years. Avoid mounding of soil onto lower leaves when cultivating. Refer to the AgraPoint Guide to Pest Management for a listing of fungicides and their application methods.

Blackleg
Blackleg is caused by the fungus *Phoma lingam*. This disease can be seed borne. Early signs of blackleg appear as small spots on leaves of young plants. On stems the spots are more linear and often surrounded by purplish borders. Stem lesions at the soil line usually extend to the root system causing dark cankers. The fibrous root system may be destroyed although new roots sent out above the lesion may keep the plant alive. Many plants wilt abruptly and die.

Control:
Use clean, certified seed, or seed which has been hot water treated. This organism is capable of surviving in the soil for three years without another Cole crop present. Practice a 4 year crop rotation, destroy brassica weeds and thoroughly incorporate plant debris. Good air and water drainage is critical in controlling this disease, along with avoiding water on the crop in the afternoon and evenings. Refer to the AgraPoint Guide to Pest Management for a listing of fungicides and their application methods.

Black Rot
Black rot is caused by the bacterium *Xanthomonas campestris* and can live in the soil for one year without another Cole crop present. Humid, rainy conditions favour the disease, which is usually spread by splashing rain or irrigation water. Black rot lesions first appear at margins of leaves. The tissue turns yellow and the lesion progresses toward the center of the leaf, usually in a v-shaped area with the base of the v toward the midrib. The veins become dark and discolouration frequently extends to the main stem and proceeds upward and downward.

Control:
Refer to the Black leg control measures, as they are useful in control of black rot as well.

Broccoli Head Rot
Head rot is caused by the soil borne bacterium *Pseudomonas marginalis*. Symptoms appear after periods of rain when heads remain wet for several days. The bacteria are splashed up from the soil to the head. When heads are colonized by the bacteria some areas appear water soaked (because a biosurfactant is released by the bacteria) in contrast to unaffected areas where the waxy surface of the florets cause water to form in beads. Small black lesions may develop in these water soaked florets. During long periods of wetness, decay spreads rapidly, resulting in a sunken area on the head. Head rot develops most rapidly at high temperatures (28°C). Frost injury and infection by Downey mildew may also bring rise to this disease.

Control:
Avoid high levels of nitrogen and avoid applying pesticides during head formation. Use resistant cultivars whenever possible and large plant spacing’s to increase air movement through the crop. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.
4.3 INSECTS

Cabbage Maggot
The cabbage maggot or cabbage fly (*Delia radicum*) adults fly close to the ground near brassica plants and lay elliptical white eggs on the stems of crops or in nearby crevices in the soil. The adult is a two-winged, ash grey fly, with black stripes on the mid section. It is half the size of a housefly, but has longer legs. Eggs hatch in three to seven days. Larvae are white, legless maggots that enter the roots and feed by rasping the plant tissue with a pair of hook like mouthparts and tunneling into the roots. Feeding damage by the cabbage maggot causes roots to be misshapen and allows the entry of decay organisms and other species of maggots, resulting in stunted or killed young plants. Maggots mature in three to four weeks and pupate. The pupae are 6 mm long, oval, hard shelled and dark brown. Pupae over winter in the soil near the roots of the host plant. Adult flies emerge in two to three weeks; the first generation usually emerges in late May to early June. The presence of adult flies can be determined by looking for eggs which are laid at the base of plants. Generally, there are two to three generations a year.

Control:
Natural enemies for the cabbage maggot include ground beetle, rove beetle, spiders, harvestmen or daddy longlegs and ants.

Cultural controls include covering young plants with floating row cover to prevent the flies from depositing eggs after plant emergence, and intercropping clovers or other legumes to prevent the flies from finding open ground near a brassica stem.

If using chemical controls, scout plants frequently and treat when damage is first observed. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.

Caterpillar Pests:
The imported cabbage worm (*Pieris rapae*), cabbage looper (*Trichoplusia ni*), diamondback moth (*Plutella xylostella*) and Purple-backed cabbageworm (*Evergestis pallidata*) are all pests of broccoli. High levels of feeding damage will cause severe defoliation, resulting in stunted plants. Broccoli can also become unmarketable if the heads are stained with frass (insect excrement) or if frass is visible.

The adult of the Imported Cabbageworm is a white butterfly, easily seen going from plant to plant laying eggs during the summer. The eggs hatch into velvety-green larvae with one thin yellow stripe down the centre of its back. The cabbageworm larvae do not loop when they walk. They are generally the most prevalent of the caterpillars found on Cole crops.

The cabbage looper gets its name from the way it forms a loop as it walks. It is a smooth green larva with two white stripes along the back and two along the sides. The cabbage looper is capable of causing the most damage to Cole crops. Cabbage loopers do not over winter in this region. Adult moths migrate into the region during the late summer.

The Diamondback Moth is much smaller than the previous insects. Three to six generations of 1.1 cm yellow-green larvae may develop each year. The larvae squirm actively when disturbed and produce many small holes on the host plant. This pest can bore into the heads of cabbage. Diamondback moths do not survive the winter in this region. Adult moths migrate in throughout the growing season. There is therefore often an overlap in generations, and all stages may be present at one time.
The Purple-backed cabbageworm is not as commonly seen as the others but will cause serious damage in high numbers. The larvae are purple on the back and pale yellow along the sides. There are one to two generations per year.

Control:
There are many natural enemies that will help control these pests in fields. Ground beetles, spiders, damsel bugs, minute pirate bugs, assassin bugs, big eyed bugs, and lacewing larvae will all attack the caterpillars. There are also some commercially available parasitic wasps that sting and parasitize eggs and larvae of caterpillars; these include *Trichogramma* spp., *Copidosoma* spp., *Apanteles* spp., *Diadegma* spp., and *Hyposoter* spp.

Cultural controls include pheromone emitters to disrupt mating, evening overhead sprinkler irrigation, and placement of floating row covers over young crops to exclude egg-laying females.

If using chemical controls, scout plants frequently and treat when the threshold level has been reached. To determine the threshold level, count the number of plants out of 25 randomly selected plants that have 1 or more caterpillars, than multiply by 4. This will give the percentage of plants infested. For broccoli, the threshold guidelines are 20-30% before heading and 5-10% after heading. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.

Cutworms:
Cutworms (*Agrotis ipsilon*) are grayish, fleshy caterpillars up to 5 cm long, which curl up when disturbed. Plants may be chewed off above or below ground level and may be damaged higher up by climbing cutworms. Most of the cutworm damage is to newly set plants in the field, but they are often found attacking seedlings in plant bed and greenhouses. Late infestation of variegated cutworm occasionally occurs.

Control:
Prepare the soil two weeks before planting to cultivate in cover crops and destroy weeds. Check plants frequently and treat when damage is first observed. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.

Aphids
The cabbage aphid, *Brevicoryne brassicae*, is a major pest of Cole crops world wide. Aphids are small, soft bodied, slow moving insects. A colony consists of winged and wingless adults and various sizes of nymphs. Aphids may be black, yellow or pink, but mostly are various shades of green. They are often found in large colonies on the undersurface of leaves; however, aphids will feed on heads, flower stalks as well as leaves, resulting in unmarketable produce. Aphids feed by piercing plants and sucking out plant sap, resulting in distorted plant parts and a slowing of plant growth. The plants may be covered by a sticky substance, called honey dew, which is excreted by the aphids.

Control:
There are many natural enemies that will feed on aphids, thus helping to reduce the populations of this pest in the field. Natural enemies that produce larvae which will feed on aphids include syrphid flies, lacewings and the predaceous midge. Adults and larvae of minute pirate bugs, big eyed bugs, lady beetles, soldier beetles and parasitic wasps like *Diaeretiella rapae* will also consume aphids.

Cultural controls include using high pressure sprinkler irrigation to knock the insects off of plants, as well as using living mulch such as clover interplanted with the crop.
If using chemical controls, check plants frequently and treat when damage is first observed. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.

Thrips

Thrips (*Thrips tabaci*) are slender, yellow-brown insects about 1 mm long. They feed by puncturing the leaves and sucking up the exuding sap. This causes the appearance of dark warts or blisters on the leaves. They also feed on broccoli heads, damaging them and making them unmarketable. They over winter on refuse, weeds, and legume forage crops. Populations increase quickly when the air temperature is over 21 °C.

Control:

Destroy refuse and control weeds. Heavy migrations of thrips can occur following the cutting of forage, particularly alfalfa or clover. It is critical to control them at early head formation (7.5 cm leaf ball).

If using chemical controls, check plants frequently and treat when damage is first observed. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.

Flea beetles

Flea beetles (*Phyllotreta* spp.) are small shiny black beetles, about 2 mm in length. They are very active early in the growing season, especially during periods of dry sunny weather. Flea beetles can seriously damage seedlings and transplants, and to a lesser extent larger plants, by chewing small pinholes through the leaves. There is one generation per year. The larvae live in the soil and feed on roots.

Control:

Biological control options for flea beetle include using a braconid wasp that will parasitize and kill adult flea beetles, and using nematodes that attack the larvae.

There are several cultural controls which can be used to combat flea beetles. Trap crops such as Chinese type cabbages, radishes or collards can be used, living mulches or polycultures are other possibilities. Covering young seedlings with floating row cover to prevent the insects from attacking the plants is another option. Using white or yellow sticky traps every 4.5 – 9 m and making sure to destroy plant debris are also good cultural control practices.

If using chemical controls, scout plants frequently and treat when the threshold has been reached. One flea beetle per plant (up to the sixth leaf stage) is the threshold number. After the 6 leaf stage, feeding will not interfere with plant growth. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.

Tarnished Plant Bug

Adult tarnished plant bugs are light brown to reddish brown in colour and about 5-6 mm in length. They occur throughout the season and are very active and quick moving. They feed on broccoli heads causing dry, shriveled, and grayish to brown florets, which reduces the marketability of the head. Bacterial and fungal rots may invade these damaged tissues.

Control:

Keep plantings and adjacent areas weed free. Avoid planting next to legumes. Check plants frequently and treat when damage is first observed. Refer to the AgraPoint Guide to Pest Management for a listing of insecticides and their application methods.
Slugs

Slugs exist in various sizes up to 10 cm. They eat holes in the leaves and leave a trail of mucus, which makes plants unsightly. The control of slug populations has been a continuing problem in the Cole crop industry.

Control:

Slugs prefer areas which are cool, moist and high in organic matter. Sod crops, weedy fence lines and hedgerows fulfill these conditions. Since slugs can over winter fairly easily, cultural practices aimed at controlling them should begin at least one year before the susceptible crop is put in. If possible, sod crops should not be followed by Cole crops. A cultivated strip around the crop has been shown to reduce the number of slugs migrating from weedy field borders. If urea (4 kg/ha) is sprayed on this cultivated strip, slug movement may be further impeded. The salt irritates the slugs as they move over it. Repeated applications are necessary as rainfall washes it into the soil. Slugs are usually more numerous in heavy, moist soils; sandy soils usually have fewer slug problems.

4.4 PHYSIOLOGICAL DISORDERS

Broccoli crops show various non-parasitic disorders which cause tissues to die off. In some cases, these deviations have been shown to depend mainly on heritable characters; whereas in other cases external factors had a least marked effect.

Blindness

Plants do not form heads, but produce many shoots at ground level. This may be caused by insects or damage to the growing point early in the plants life.

Leafy Heads

Small leaves develop and protrude through the head during high temperatures, drastic fluctuations in day and night temperatures or improper nitrogen balance.

Broccoli buttoning

Buttoning is the premature formation of a head 2.5 to 10 cm in diameter. Buttoning can occur anytime between seeding and almost mature plant, but usually occurs shortly after transplanting into the field. Generally foliar growth slows after buttoning resulting in too few nutrients to nourish the curd to marketable size. Losses are usually most severe in the early planted crop during cold, wet seasons, when vegetative growth is affected by:

1. too much hardening of greenhouse plants
2. too little hardening of greenhouse plants
3. low soil nitrogen
4. low soil moisture
5. continued cold weather (4 to 10 °C for day or more)
6. Other – disease, insects, micronutrient deficiency, etc.

Some cultivars, particularly early ones, are more susceptible to buttoning than others.

Lack of heads in broccoli

During periods of extremely warm weather (days over 30 °C and nights of 25 °C) broccoli can remain vegetative (does not head) since they do not receive enough cold for head formation. This can cause a problem in scheduling the marketing of even volumes of crop.

Hollow stem in broccoli

Symptoms are internal only. This condition starts with gaps that develop in the tissues, and gradually they enlarge to create a hollow stem, sometimes from the bottom of the stalk into the head. Ordinarily, there is no discoloration of the surface of these openings at harvest, but both discoloration and tissue breakdown may develop soon after harvest. Avoid excessive nitrogen
after head initiation. Dense plantings will maintain even growth rates and decrease the occurrence of hollow stem.

5.0 HARVESTING AND HANDLING

Harvest broccoli heads when bud clusters are tightly closed and the entire head is tight and firm. Heads that are loose or have individual flower clusters with yellow petals should not be picked.

The terminal heads mature first. By removing the main terminal head the growth of the lateral heads (auxiliary buds) lower on the main stem will be promoted and production of smaller heads that can be harvested will commence. Since the lateral heads develop unevenly, they cannot all be harvested at one time; lateral heads must be harvested twice a week. Harvesting auxiliary buds is not common with large Nova Scotia producers; however, it would be practical for small operations that market to road side stands.

Broccoli heads are usually harvested with about 15 cm of the stem attached. After they have been cut off, part of the foliage is removed from the harvested shoots. The heads are from 5 to 25 cm in diameter and weigh from 100 to 800 g each. Side shoots are from 5 to 10 cm in diameter and weigh from 100 to 500 g each. Broccoli intended for fresh consumption is often sold in bunches weighing about 450 to 600 g.

Broccoli heads mature at different times, resulting in two or three cuts needed to harvest a field. Broccoli is harvested by hand and is often cut and packed into wax covered boxes in the field. The boxes are placed on pallets and taken from the field to a central icing facility. Rapidly removing field heat from broccoli is very important as the quality of harvested heads declines rapidly at warm temperatures. Inside the icing facility, the pallet is placed under an icing machine, and ice or a ice slurry is injected throughout the entire pallet. This method is very effective at removing field heat. If field heat is not removed immediately, broccoli will turn yellow and wilt after a few days in storage.

5.1 STORAGE AND CONDITIONING

Broccoli is highly perishable and should be cooled immediately following harvest. In addition to icing, hydro cooling and forced-air cooling can also be used, but good temperature management must be maintained following cooling. If held at 0°C and near 100% relative humidity, broccoli can be stored for 3 to 4 weeks. Exposure to ethylene (from apples, other ethylene producing fruit or engine exhaust) will accelerate the yellowing of flower buds and reduce storage life and should be avoided.

Controlled atmosphere (CA) storage atmospheres of 1-2% oxygen with 5-10% carbon dioxide at temperatures of 0-5°C will benefit broccoli and can double storage life, especially when held above optimum temperatures.

Crushed ice or slurry ice is usually added to packed cartons to keep produce fresh during shipping, especially when adequate refrigeration is not available.

6.0 BIBLIOGRAPHY

