FACT SHEET FOOD PACKAGING | ©Perennia 2021 There is a movement around the globe to move towards eliminating plastic waste. With 300 million tonnes of plastic waste generated each year, possibly persisting in the environment for centuries, industry and consumers widely agree that our usage of plastic cannot continue on its current trajectory. The Federal Government is supporting the Canada-wide Strategy on Zero Plastic Waste, and consumers are looking to reduce their impact; what are the best plastics available for maintaining quality while supporting a circular economy? What do all of those numbers mean on the bottom of plastic containers? How do other materials like metal, glass and paper perform? How do we continue to protect food properly and prevent food loss and waste while considering all environmental impacts of packaging? And what about the compatibility for your food type? PAGE 1 ## CONSIDERATIONS FOR MINIMIZING THE FOOTPRINT FOR YOUR FOOD PACKAGING The Canadian Produce Marketing Association has created a guide to preferred plastics for produce – materials like PET, HDPE, LDPE are some of the most easily recycled, and packaging containing post-consumer materials is also favourable. A direct link to the Preferred Plastics Guide can be found in the Further Reading section. Whichever package you choose, be sure to communicate clearly to consumers whether it is recyclable or compostable and, if so, provide any applicable directions. The following table outlines some pros and cons of food packaging functionality as well as some environmental considerations: | Packaging | | | Food Compatibility/Marketing | | Environmental Issues | | |-----------|------|--------------------|---|---|--|--| | Group | Туре | | Pros | Cons | Pros | Cons | | Glass | | Bottles or
Jars | Clarity, excellent barrier
to moisture and gases,
suitable for high heat,
often used for high-end
products | Breakable, heavy,
bulky | Recyclable
(unlimited cycles),
re-useable | High energy costs
for production and
transportation | | | | Aluminum | Excellent moisture/
gas barrier, lightweight,
suitable for high heat,
less expensive than
tinplate steel, malleable | Limited structural strength | Recyclable
(unlimited cycles)
with high return
rates; lightweight | Initial production energy
intensive but high
recycling rate brings
down overall footprint | | Metal | 9 | Tinplate | Excellent moisture/gas
barrier, suitable for high
heat, corrosion-resistant | Coating required
to avoid reaction
with foods; more
expensive than
tin-free steel | Recyclable
(unlimited) and
can be separated
magnetically | Heavier than aluminum; increased cost of transport | | | | Tin-free
steel | Excellent moisture/gas
barrier, suitable for high
heat, very strong | Slightly less
resistant to
corrosion than
tinplate/aluminum | Recyclable
(unlimited) and
can be separated
magnetically | Heavier than aluminum;
increased cost of
transport | | | | Foil tray | Suitable for high heat | Not microwave friendly | Recyclable
(unlimited), fairly
lightweight | Initial production energy intensive | PAGE 2 ## FACT SHEET FOOD PACKAGING | © Perennia 2021 | Packaging | | | Food Compatibility/Marketing | | Environmental Issues | | |-----------|----------|---|---|--|--|--| | Group | Туре | | Pros | Cons | Pros | Cons | | Plastics | 7 | PETE | Clear, strong, good
moisture and gas barrier | Current recycling
rates mean it can
end up in landfill | Very widely
recycled globally;
can be recycled
for more cycles
than other
plastics | Winds up in environment;
better recycling
infrastructure needed | | | | HDPE | Suitable for cold,
excellent moisture
barrier, moderately
strong | Opaque or semi-
translucent, poor
oxygen barrier | Very widely recycled | Winds up in environment;
better recycling
infrastructure needed | | | | LDPE LDPE | Translucent, very good
moisture barrier, suitable
for cold | Typically thin and
may require other
packaging for
pallet stacking | Widely recycled | Winds up in environment;
better recycling
infrastructure needed | | | | 25
PP | Withstands high
temperatures, can be
microwaved, excellent
moisture barrier | Opaque or semi-
transparent, poor
oxygen barrier,
moderately
strong, not
suitable for
freezing | Recycled in some
locations and
increasing | Recyclability depends on location | | | | 26
PS | Clear—ability to see food through container | Poor moisture
and gas barrier,
poor impact
resistance | Not
recommended | Recycling is limited | | | | OTHER | Depends on type | Includes a
"catch-all" for
several plastics
outside of other
classifications | Some types are re-useable | Recycling is limited | | | 0 | PLA (plant-
based
plastic) | Allows some moisture
transfer, which may help
some fresh produce
items | Pre-mature degradation may affect functionality/ packaging itself may have a shelf life | Biodegradable | Only biodegrades under optimal conditions; can contaminate recycling streams; corn grown to produce packaging can displace agri-food crops | | Films | | Flexible
packaging
– Bags or
stand-up
pouch | Properties can be
tailored for product
needs; displays graphics
well | Cost can vary
based on
packaging needs
and may be on
the pricier side | Reduction of
source materials;
lightweight; some
compostable or
recyclable multi-
layer bags are
now available | Not usually recyclable;
compostable options are
available but offer less
protection | | | 1 | Films | Can be tailored for product needs | Requires specific
equipment –
expensive | Can reduce
materials
significantly
compared with
rigid lidding | May not be recyclable | | | | Edible films | Potential to extend shelf
life of produce without
plastic; can provide
barrier to moisture,
oxygen and aromas | Food safety
considerations;
still under
development;
challenging to
balance barrier
and mechanical
properties | Zero waste | N/A PAGE 3 | | Packaging | | | Food Compatibility/Marketing | | Environmental Issues | | |-----------------|------|--|--|---|---|--| | Group | Туре | | Pros | Cons | Pros | Cons | | Multi-Layer box | | Tetra-Paks™ | Excellent barrier properties, lightweight, convenient | Very large
volumes required | Streamlines
shipping,
somewhat
recyclable | Multi-layer includes
paper, aluminum, plastic,
so recycling is difficult | | Paper | | Paperboard
(1-layer) | Keeps vulnerable foods
protected, easy to print
graphics, consistent
supply | Limited moisture
and gas barrier
properties | Recyclable,
compostable, and
renewable | Uses more water and energy in production than some other types of packaging | | | | Cardboard
(3-layers) | Very functional and
versatile secondary
packaging, consistent
supply | Limited moisture
and gas barrier
properties | Recyclable unless
waxed; renewable | Uses more water and energy in production than some other types of packaging | | | | Easy to print
graphics,
lightweight,
consumer
friendly | Product not visible,
occasional problems with
leakers | Readily recyclable
and lightweight
for shipping | Recyclable unless
waxed; renewable | Uses more water and
energy in production
than some other types of
packaging | | | | Pulpboard | Suitable for protecting odd shapes, consistent supply | Limited moisture
and gas barrier
properties | Compostable or
recyclable; can
be made with
recycled paper;
renewable | Uses more water and
energy in production
than some other types of
packaging | ## **FURTHER READING** https://www.canada.ca/en/environment-climate-change/news/2020/10/canada-one-step-closer-to-zero-plastic-waste-by-2030.html https://zerowastecanada.ca/zero-waste-hierarchy/#1494613521423-107fd31d-9b90 https://www.cpma.ca/docs/default-source/industry/2020/CPMA Preferred Plastics Guide English.pdf PAGE 4