

Kentville Research & Development Centre (KRDC) – Nova Scotia wine grape bud hardiness

2025/2026 Report no. 1: November 4 & 5, 2025

Prepared by Jeff Franklin (jeff.franklin@agr.gc.ca) and Dr. Harrison Wright (harrison.wright@agr.gc.ca), Plant Physiology Program, KRDC, Agriculture and Agri-Food Canada (AAFC) / Government of Canada; 32 Main St, Kentville, Nova Scotia, B4N 1J5.

Figure 1. Plot showing the LTE50 values (coloured lines) for four wine grape varieties taken from Nova Scotia vineyards, as well as recent and historical temperature trends. Current observed minimum temperatures (black line) as well as the 100-year minimum temperatures (grey line) were recorded at the Environment and Climate Change Canada (ECCC) weather station located at the Kentville Research and Development Centre.

Current report

In this first round of the bud hardiness survey for the 2025/26 dormant season, we are seeing that all varieties in the survey are less hardy relative to the same time last year. Typically in early November we would expect to see LTE50 values of -20 °C or lower for hybrid varieties and slightly warmer than -20 °C for *vinifera* varieties. The difference is most pronounced for L'Acadie, which is approximately 5 °C less hardy than expected. This trend in bud hardiness seems to coincide with the slow rate of lignification seen in vineyards across the growing region and L'Acadie stands out this year as having a considerable amount of green wood present for the time of year. Temperatures in October and November have been approximately 1 °C above the 25-year average, which may be contributing to this delay. Another potential factor is the latent effect of this summer's drought. Measurements made by our team in Kentville showed that photosynthetic rates were lower through the dry months of the summer than measured in past years. Reduced carbohydrate storage can reduce winter hardiness by delaying wood ripening, lignification and other factors associated with acclimation.

Table 1. LTE10, LTE50 and LTE90 average values (°C) for core wine grape cultivars for the current and previous reporting periods

Core cultivars and sites	Nov. 4 - 5			LTE10			LTE50			LTE90			LTE10			LTE50			LTE90		
	LTE10	LTE50	LTE90	LTE10	LTE50	LTE90	LTE10	LTE50	LTE90	LTE10	LTE50	LTE90	LTE10	LTE50	LTE90	LTE10	LTE50	LTE90			
Chardonnay (5 sites)	-14.0	-16.1	-18.9																		
L'Acadie (5 sites)	-12.2	-15.2	-20.2																		
Marquette (5 sites)	-16.0	-20.2	-23.9																		
New York Muscat (5 sites)	-15.4	-18.6	-21.6																		
NYUS.2.1 LTE50 prediction*																					
Chardonnay (Kentville)		-18.6																			
L'Acadie (Kentville)		-19.0																			
Marquette (Kentville)		-19.0																			

* Wang et al., 2024. *Horticulture Research*, 11, 2: uhad286. Follow predicted bud hardiness values in real time at a weather site near you in the US or Canada via the following website: https://cornell-tree-fruit-physiology.shinyapps.io/North_America_Grape_Freezing_Tolerance/.

Agriculture and
Agri-Food Canada

Agriculture et
Agroalimentaire Canada

Canada

Research report description

The Nova Scotia wine grape bud hardiness survey generates reports detailing the low temperature exotherm (LTE) values over the dormant period (roughly from November to April). The LTE is the temperature (°C) at which a bud freezes and is killed: LTE10, LTE50 and LTE90 values denote the temperatures at which 10%, 50% and 90% of the viable buds freeze. The LTE values for a given variety and site are generated using eight canes obtained from eight vines; the compound buds from nodes 3 through 7 from each cane are measured via differential thermal analysis (DTA). It is important to note that the LTE value denotes a bud's susceptibility to acute, cold temperature damage; it does *not* necessarily reflect the bud's susceptibility to dehydration, poor vine health and other more chronic forms of stress that can result in bud mortality at temperatures above the LTE values.

Each report includes: (1) a plot showing the median LTE50 values for a group of hybrid and vinifera wine grape cultivars averaged over several sites located in Kings county as well as recent and historical minimum temperature trends (Figure 1); (2) comments on the current reporting period; (3) a table of LTE10, LTE50 and LTE90 values for the same cultivars shown in Figure (Table 1); (4) A computer-model generated approximation of the LTE50 value based on temperatures obtained from the Kentville Environment and Climate Change Canada (ECCC) weather station and the NYUS.2 machine learning model. This report is produced by the KRDC Plant Physiology Program and is supported by Grape and Wine Cluster Activity #18: Growing More Resilient and Hardy Wine Grapes in the Face of Climate Change in an Eastern Canadian Environment. If you have any questions or comments, please feel free to reach out to the KRDC Plant Physiology Program using the contact information listed above.

© His Majesty the King in Right of Canada, represented by the Minister of Agriculture and Agri-Food (2025).